WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #10 due 01/08/2016

Problem 1. Let a € Loo(R?) and u € Ly(R?). Prove that [|(au)® — au®||p,re) — 0 as
e — 0. Here u® denotes the regularization of u with respect to .

Solution. Note that au € Lo(R?) (via Holder’s inequality). Hence, using Lemma 3.3.4
we have ||(au)® — aul|,gs) — 0 as e = 0. Thus, with the triangle inequality, Holder
inequality, and Lemma 3.3.4 one obtains

[(au)® — au(s)HLg(Rd) <[|(au)® — au| p,ray + [Jau — GU(E)HLQ(W)
<[l(au)® — aul| ey + lal po@ayllu — w1y @ay — 0

for ¢ — 0 Problem 2. Show that the elastic wave equations
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can be written has a symmetric hyperbolic system. Here v : R?® — R? denotes the
displacement,
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the matrix o7 is a real symmetric positive definite 6 X 6 matrix which captures the stiffness
of the elastic material, and p > 0 is the density. These coefficients are assumed to be
smooth functions of time and space and p is uniformly positive and o7 is uniformly positive
definite. Hint: Recall the reduction of the scalar wave equation to a symmetric hyperbolic
system from Section 3.1.

Solution. Introduce a vector-valued function v with 9 components and 9 x 9 matrices A7
for y =0,1,2,3 via

. {Mgtggm}, A = [’)53 MO] gAjaf: [D?m D@T] |

Then, with the vector-valued function F' with 9 components given by

one obtains from (1)
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and the matrices A7, j = 0,1, 2, 3 are symmetric by construction. Furthermore, the matrix
AV is positive definite. This way the elastic wave equations are represented as a symmetric
hyperbolic system.

Problem 3. Consider the Maxwell system
Oi(ce) =V X h+oe=fi Oy(uh) +V xe=fo

with f = (f1, f2)T € Lo(Q)® and with initial data e(0,-) = e(x) € Ly(R?)? and h(0,-) =
h(l') € LQ(R3)3.

a.) Suppose that the coefficients ¢, u, o are of class W1 (Q) and that the matrices ¢ and
1 are real symmetric and uniformly positive definite and the matrix o is real symmetric
and non-negative definite. What can you say about the solvability of the initial value
problem 7

Solution. From Homework #8 we know that the Maxwell system is a symmetric hy-
perbolic system. Hence, using Theorem 3.3.3 this system has a unique solution (e, h) €
C([0,TY], Ly(R)S).

b.) Suppose that ¢ and p are time-independent. Define

E(t) = /R3 [eHee(t, ) dx —i—/ (W uh)(t, z) dx |

R3
which is known as the energy functional. Prove that the energy is non-increasing for a
weak solution to the homogeneous Maxwell equations. Furthermore, show that the energy
is time-independent if, in addition, o = 0. (Recall that efee = Z?Zl €k€;j€k-)

Solution. From the proof of Theorem 3.3.3 we know that each weak solution (e, h) is
the limit in C([0, T], Ly(RY)%) of its regularizations (in space only) (e, k) € H*(Q) for
¢ — 0. Hence it will suffice to work with the regularizations since we can eventually take
the limit ¢ — 0. This has the advantage that we can differentiate in space and time. For
brevity we will drop the superscript € in the following formulas. Note that by construction
that & is real valued. Using the symmetry and the time independence of € and p we have
compute
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where we relied also on the Maxwell equations, the integration by parts formula for the

curl from Homework #7 and the fact that o is assumed to be non-negative definite.

Moreover, if ¢ = 0 the last integral will vanish and we obtain &”(t) = 0 for all ¢ € [0, T7.
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