WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#10 due 01/08/2016
Problem 1. Let $a \in L_{\infty}\left(\mathbb{R}^{d}\right)$ and $u \in L_{2}\left(\mathbb{R}^{d}\right)$. Prove that $\left\|(a u)^{(\varepsilon)}-a u^{(\varepsilon)}\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Here $u^{(\varepsilon)}$ denotes the regularization of u with respect to x.
Solution. Note that $a u \in L_{2}\left(\mathbb{R}^{d}\right)$ (via Hölder's inequality). Hence, using Lemma 3.3.4 we have $\left\|(a u)^{(\varepsilon)}-a u\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Thus, with the triangle inequality, Hölder inequality, and Lemma 3.3.4 one obtains

$$
\begin{aligned}
\left\|(a u)^{(\varepsilon)}-a u^{(\varepsilon)}\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} & \leq\left\|(a u)^{(\varepsilon)}-a u\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}+\left\|a u-a u^{(\varepsilon)}\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} \\
& \leq\left\|(a u)^{(\varepsilon)}-a u\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}+\|a\|_{L_{\infty}\left(\mathbb{R}^{d}\right)}\left\|u-u^{(\varepsilon)}\right\|_{L_{2}\left(\mathbb{R}^{d}\right)} \longrightarrow 0
\end{aligned}
$$

for $\varepsilon \rightarrow 0$ Problem 2. Show that the elastic wave equations

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-D(\partial)^{T} \mathscr{A} D(\partial) u=f \tag{1}
\end{equation*}
$$

can be written has a symmetric hyperbolic system. Here $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denotes the displacement,

$$
D(\partial)=\left[\begin{array}{ccc}
\partial_{1} & 0 & 0 \\
0 & \partial_{2} & 0 \\
0 & 0 & \partial_{3} \\
0 & \partial_{3} & \partial_{2} \\
\partial_{3} & 0 & \partial_{1} \\
\partial_{2} & \partial_{1} & 0
\end{array}\right],
$$

the matrix \mathscr{A} is a real symmetric positive definite 6×6 matrix which captures the stiffness of the elastic material, and $\rho>0$ is the density. These coefficients are assumed to be smooth functions of time and space and ρ is uniformly positive and \mathscr{A} is uniformly positive definite. Hint: Recall the reduction of the scalar wave equation to a symmetric hyperbolic system from Section 3.1.
Solution. Introduce a vector-valued function v with 9 components and 9×9 matrices A^{j} for $j=0,1,2,3$ via

$$
v=\left[\begin{array}{c}
\partial_{t} u \\
\mathscr{A} D(\partial) u
\end{array}\right], \quad A^{0}=\left[\begin{array}{cc}
\rho I_{3} & 0 \\
0 & \mathscr{A}^{-1}
\end{array}\right], \quad \sum_{j=1}^{3} A^{j} \partial_{j}=\left[\begin{array}{cc}
0 & D(\partial)^{T} \\
D(\partial) & 0
\end{array}\right]
$$

Then, with the vector-valued function F with 9 components given by

$$
F=\left[\begin{array}{l}
f \\
0
\end{array}\right]
$$

one obtains from (1)

$$
A^{0}(t, x) \partial_{t} v+\sum_{j=1}^{3} A^{j} \partial_{j} v-\left[\begin{array}{cc}
0 & 0 \\
0 & \mathscr{A}^{-1} \partial_{t} \mathscr{A}
\end{array}\right] v=F
$$

and the matrices $A^{j}, j=0,1,2,3$ are symmetric by construction. Furthermore, the matrix A^{0} is positive definite. This way the elastic wave equations are represented as a symmetric hyperbolic system.

Problem 3. Consider the Maxwell system

$$
\partial_{t}(\varepsilon e)-\nabla \times h+\sigma e=f_{1} \quad \partial_{t}(\mu h)+\nabla \times e=f_{2}
$$

with $f=\left(f_{1}, f_{2}\right)^{T} \in L_{2}(Q)^{6}$ and with initial data $e(0, \cdot)=e(x) \in L_{2}\left(\mathbb{R}^{3}\right)^{3}$ and $h(0, \cdot)=$ $h(x) \in L_{2}\left(\mathbb{R}^{3}\right)^{3}$.
a.) Suppose that the coefficients ε, μ, σ are of class $W_{\infty}^{1}(Q)$ and that the matrices ε and μ are real symmetric and uniformly positive definite and the matrix σ is real symmetric and non-negative definite. What can you say about the solvability of the initial value problem ?
Solution. From Homework \#8 we know that the Maxwell system is a symmetric hyperbolic system. Hence, using Theorem 3.3.3 this system has a unique solution $(e, h) \in$ $C\left([0, T], L_{2}\left(\mathbb{R}^{d}\right)^{6}\right)$.
b.) Suppose that ε and μ are time-independent. Define

$$
\mathscr{E}(t)=\int_{\mathbb{R}^{3}}\left[e^{H} \varepsilon e\right](t, x) d x+\int_{\mathbb{R}^{3}}\left[h^{H} \mu h\right](t, x) d x,
$$

which is known as the energy functional. Prove that the energy is non-increasing for a weak solution to the homogeneous Maxwell equations. Furthermore, show that the energy is time-independent if, in addition, $\sigma \equiv 0$. (Recall that $e^{H} \varepsilon e=\sum_{j=1}^{3} \varepsilon_{j k} e_{j} \bar{e}_{k}$.)
Solution. From the proof of Theorem 3.3.3 we know that each weak solution (e, h) is the limit in $C\left([0, T], L_{2}\left(\mathbb{R}^{d}\right)^{6}\right)$ of its regularizations (in space only) $(e, h)^{(\varepsilon)} \in H^{1}(Q)$ for $\varepsilon \rightarrow 0$. Hence it will suffice to work with the regularizations since we can eventually take the limit $\varepsilon \rightarrow 0$. This has the advantage that we can differentiate in space and time. For brevity we will drop the superscript ε in the following formulas. Note that by construction that \mathscr{E} is real valued. Using the symmetry and the time independence of ε and μ we have compute

$$
\begin{aligned}
\mathscr{E}^{\prime}(t) & =2 \int_{\mathbb{R}^{3}} e^{H} \varepsilon \frac{\partial e}{\partial t} d x+2 \int_{\mathbb{R}^{3}} h^{H} \mu \frac{\partial h}{\partial t} d x \\
& =\Re \int_{\mathbb{R}^{3}}\left[e^{H} \nabla \times h-h^{H} \nabla \times e\right] d x-\int_{\mathbb{R}^{3}} e^{H} \sigma e d x \\
& =\Re(e, \nabla \times h)_{L_{2}\left(\mathbb{R}^{3}\right)}-\Re(\nabla \times e, h)_{L_{2}\left(\mathbb{R}^{3}\right)}-\int_{\mathbb{R}^{3}} e^{H} \sigma e d x=-\int_{\mathbb{R}^{3}} e^{H} \sigma e d x \leq 0
\end{aligned}
$$

where we relied also on the Maxwell equations, the integration by parts formula for the curl from Homework \#7 and the fact that σ is assumed to be non-negative definite. Moreover, if $\sigma \equiv 0$ the last integral will vanish and we obtain $\mathscr{E}^{\prime}(t)=0$ for all $t \in[0, T]$.

