
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #10 due 01/08/2016

Problem 1. Let a ∈ L∞(Rd) and u ∈ L2(Rd). Prove that ‖(au)(ε) − au(ε)‖L2(Rd) → 0 as

ε→ 0. Here u(ε) denotes the regularization of u with respect to x.

Solution. Note that au ∈ L2(Rd) (via Hölder’s inequality). Hence, using Lemma 3.3.4
we have ‖(au)(ε) − au‖L2(Rd) → 0 as ε → 0. Thus, with the triangle inequality, Hölder
inequality, and Lemma 3.3.4 one obtains

‖(au)(ε) − au(ε)‖L2(Rd) ≤‖(au)(ε) − au‖L2(Rd) + ‖au− au(ε)‖L2(Rd)

≤‖(au)(ε) − au‖L2(Rd) + ‖a‖L∞(Rd)‖u− u(ε)‖L2(Rd) −→ 0

for ε→ 0 Problem 2. Show that the elastic wave equations

(1) ρ
∂2u

∂t2
−D(∂)TAD(∂)u = f

can be written has a symmetric hyperbolic system. Here u : R3 → R3 denotes the
displacement,

D(∂) =


∂1 0 0
0 ∂2 0
0 0 ∂3
0 ∂3 ∂2
∂3 0 ∂1
∂2 ∂1 0

 ,

the matrix A is a real symmetric positive definite 6×6 matrix which captures the stiffness
of the elastic material, and ρ > 0 is the density. These coefficients are assumed to be
smooth functions of time and space and ρ is uniformly positive and A is uniformly positive
definite. Hint: Recall the reduction of the scalar wave equation to a symmetric hyperbolic
system from Section 3.1.

Solution. Introduce a vector-valued function v with 9 components and 9× 9 matrices Aj

for j = 0, 1, 2, 3 via

v =

[
∂tu

AD(∂)u

]
, A0 =

[
ρI3 0
0 A −1

]
,

3∑
j=1

Aj∂j =

[
0 D(∂)T

D(∂) 0

]
.

Then, with the vector-valued function F with 9 components given by

F =

[
f
0

]
,

one obtains from (1)

A0(t, x)∂tv +
3∑

j=1

Aj∂jv −
[
0 0
0 A −1∂tA

]
v = F
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and the matrices Aj, j = 0, 1, 2, 3 are symmetric by construction. Furthermore, the matrix
A0 is positive definite. This way the elastic wave equations are represented as a symmetric
hyperbolic system.

Problem 3. Consider the Maxwell system

∂t(εe)−∇× h+ σe = f1 ∂t(µh) +∇× e = f2

with f = (f1, f2)
T ∈ L2(Q)6 and with initial data e(0, ·) = e(x) ∈ L2(R3)3 and h(0, ·) =

h(x) ∈ L2(R3)3.

a.) Suppose that the coefficients ε, µ, σ are of class W 1
∞(Q) and that the matrices ε and

µ are real symmetric and uniformly positive definite and the matrix σ is real symmetric
and non-negative definite. What can you say about the solvability of the initial value
problem ?

Solution. From Homework #8 we know that the Maxwell system is a symmetric hy-
perbolic system. Hence, using Theorem 3.3.3 this system has a unique solution (e, h) ∈
C([0, T ], L2(Rd)6).
b.) Suppose that ε and µ are time-independent. Define

E (t) =

∫
R3

[eHεe](t, x) dx+

∫
R3

[hHµh](t, x) dx ,

which is known as the energy functional. Prove that the energy is non-increasing for a
weak solution to the homogeneous Maxwell equations. Furthermore, show that the energy
is time-independent if, in addition, σ ≡ 0. (Recall that eHεe =

∑3
j=1 εjkejek.)

Solution. From the proof of Theorem 3.3.3 we know that each weak solution (e, h) is
the limit in C([0, T ], L2(Rd)6) of its regularizations (in space only) (e, h)(ε) ∈ H1(Q) for
ε→ 0. Hence it will suffice to work with the regularizations since we can eventually take
the limit ε→ 0. This has the advantage that we can differentiate in space and time. For
brevity we will drop the superscript ε in the following formulas. Note that by construction
that E is real valued. Using the symmetry and the time independence of ε and µ we have
compute

E ′(t) = 2

∫
R3

eHε
∂e

∂t
dx+ 2

∫
R3

hHµ
∂h

∂t
dx

= <
∫
R3

[eH∇× h− hH∇× e] dx−
∫
R3

eHσe dx

= <(e,∇× h)L2(R3) −<(∇× e, h)L2(R3) −
∫
R3

eHσe dx = −
∫
R3

eHσe dx ≤ 0

where we relied also on the Maxwell equations, the integration by parts formula for the
curl from Homework #7 and the fact that σ is assumed to be non-negative definite.
Moreover, if σ ≡ 0 the last integral will vanish and we obtain E ′(t) = 0 for all t ∈ [0, T ].


